History dependent quantum random walks as quantum lattice gas automata
نویسندگان
چکیده
منابع مشابه
History Dependent Quantum Random Walks as Quantum Lattice Gas Automata
Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of q...
متن کاملQuantum random walks with history dependence
We introduce a multi-coin discrete quantum random walk where the amplitude for a coin flip depends upon previous tosses. Although the corresponding classical random walk is unbiased, a bias can be introduced into the quantum walk by varying the history dependence. By mixing the biased random walk with an unbiased one, the direction of the bias can be reversed leading to a new quantum version of...
متن کاملAperiodic quantum random walks.
We generalize the quantum random walk protocol for a particle in a one-dimensional chain, by using several types of biased quantum coins, arranged in aperiodic sequences, in a manner that leads to a rich variety of possible wave-function evolutions. Quasiperiodic sequences, following the Fibonacci prescription, are of particular interest, leading to a sub-ballistic wave-function spreading. In c...
متن کاملOpen Quantum Random Walks
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogue of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each times...
متن کاملLattice-Plasmon Quantum Features
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2014
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4903977